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Magnetism and spin physics are true quantum mechanical effects and their description usually
requires multi reference methods and is often hidden in the standard description of molecules in
quantum chemistry. In this work we present a twofold approach to the description of spin physics
in molecules and solids. First, we present a method that identifies the single-particle basis in which
a given subset of the orbitals is equivalent to spin degrees of freedom for models and materials
which feature significant spin physics at low energies. We introduce a metric for the spin-like
character of a basis orbital, of which the optimization yields the basis containing the optimum spin-
like basis orbitals. Second, we demonstrate an extended Schrieffer-Wolff transformation method to
derive the effective Hamiltonian acting on the subspace of the Hilbert space in which the charge
degree of freedom of electron densities in the spin-like orbitals is integrated out. The method then
yields an effective spin-bath Hamiltonian description for the system. This extended Schrieffer-Wolff
transformation is applicable to a wide range of Hamiltonians and has been utilized in this work for
model Hamiltonians as well as the active space Hamiltonian of molecular chromium bromide.

I. INTRODUCTION

The theoretical study of the physics of many-body
quantum system has remained notoriously difficult on
conventional computers not least due to the intractable
exponential growth of the corresponding Hilbert spaces.
This holds true already for simple model Hamiltonians,
but becomes even more problematic for the study of real
materials due to the vast number of degrees of freedom
and interactions. To investigate certain aspects of these
materials it is therefore imperative to either utilize sig-
nificant approximations or to obtain a much more con-
cise Hamiltonian focused on accurately describing this
aspect. In this article, we concentrate on the description
of the spin physics of actual materials. These spin physics
are relevant for the understanding of the material’s mag-
netic properties as well as their experimental identifica-
tion with spin resonance spectroscopy techniques [1]. The
quantum simulation of spin system Hamiltonians is also
perfectly suited as an application of quantum comput-
ing in general [2] and analogue quantum computing in
particular.

We present a method for the derivation of the effective
Hamiltonian description for the relevant spin degrees of
freedom of an actual material embedded in an environ-
ment of fermions. The first part of the method entails
the identification of potential relevant orbital spin de-
grees of freedom. We propose a new metric for the clas-
sification of orbital spin degrees of freedom and present
a systematic way to determine the orbital basis that con-
tains the best realizations of these spins, see also [3].
Given the presence of relevant spins, we proceed with the
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second part of the method, a Schrieffer-Wolff transforma-
tion procedure [4, 5] aimed at decoupling the subspace of
the Hilbert space containing these spin degrees of free-
dom from the remaining high-energy subspaces. Many
different Schrieffer-Wolff and related unitary transforma-
tion schemes have been proposed, comprising perturba-
tive [4, 6], variational [7], and continuous [8–10] variants.
So far, the application of these methods has been lim-
ited to concise model Hamiltonians. We present an ex-
tended version of the perturbative Schrieffer-Wolff trans-
formation that can be applied to generic Hamiltonian
descriptions of materials, given the presence of relevant
low-energy spin physics in the material. We demonstrate
the accuracy of the effective spin-bath model Hamiltoni-
ans resulting from our Schrieffer-Wolff transformation for
the description of the low-energy physics both for model
Hamiltonians with established results [4, 11] as well as an
actual material. We further discuss the extent to which
the quality of the effective spin-bath model Hamiltonian
derived with our proposed method can be predicted.

II. METHODOLOGY

In Section IIA we define the notion of spin-like or-
bitals and in Section II B we propose the local parity
as a metric for the spin-like character of orbitals. In
sec. II C we present our parity optimization procedure as
a way to determine the spin-like orbitals of a system. We
discuss the basic concept of the Schrieffer-Wolff trans-
formation in sec. IID. We detail our proposed extended
Schrieffer-Wolff transformation method in Sections II E
and II F. In sec. IIG we show how the described meth-
ods are combined into our workflow for deriving effective
spin-bath model Hamiltonians for materials with relevant
low-energy spin physics.
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A. Spin-like orbitals

We consider an orbital ϕi as being spin-like only if
the electron density ni contained in it is strictly equal
to one. This requires that the average electron density
in the orbitals ϕi satisfies ⟨ni⟩ = 1. It furthermore re-
quires that the fluctuations around this average electron
density satisfy δni → 0. Negligible fluctuations around
the average electron density imply that electron density
of the orbital does not affect the low-energy dynamics
of the system and vice versa. Just an average electron
density ⟨ni⟩ = 1 places no restrictions on the orienta-
tion and dynamics of the electron spin in the orbital ϕi.
When both requirements are simultaneously met by the
states in the low-energy Hilbert space, the dynamics of
the electron density in the orbital ϕi, often referred to as
the charge degree of freedom, becomes superfluous to the
description of the dynamics of the system. The electron
density in the orbital ϕi consequently couples to the re-
mainder of the system exclusively via its spin degree of
freedom. It is then sufficient to represent the degrees of
freedom of the electron density contained in the orbital
ϕi as a pure spin degree of freedom and to employ the
associated spin operator algebra. The local Hilbert space
Hi of a spin degree of freedom is half the size of the local
Hilbert space of a fermionic orbital and is furthermore
naturally represented on a Qubit. We therefore aim to
determine each spin-like basis orbital or linear combina-
tions thereof meeting both stated requirements, so that
they can be represented as spins.

B. Local parity

We propose the ground state local parity Pi as measure
for the spin-like character of an orbital ϕi. The operator
representation of the local parity reads

Pi = (−1)ni↑+ni↓ , (1)

where ni↑ = c†i↑ci↑ denotes the electron density in ϕi with

electron spin quantum number szi = +1/2 and ni↓ =

c†i↓ci↓ the electron density with quantum number szi =

−1/2 respectively. The local Hilbert space Hi of the
orbital ϕi is spanned by the states,

{|0⟩, | ↑⟩, | ↓⟩, | ↑↓⟩} , (2)

and the action of the local parity operator on these states
reads

Pi |0⟩ = +1 |0⟩
Pi | ↓⟩ = −1 | ↓⟩
Pi | ↑⟩ = −1 | ↑⟩
Pi | ↑↓⟩ = +1 | ↑↓⟩ .

(3)

For states where the orbital contains a single electron the
local parity operator Pi returns the eigenvalue pi = −1.

For the remaining two basis states Pi returns the eigen-
value pi = +1. Any state |ψ⟩ in the local Hilbert space
Hi that contains contributions from non singly occupied
basis states hence satisfies

Pi|ψ⟩ = (−1 + α) |ψ⟩ , (4)

with 2 ≥ α > 0, because the resulting fluctuations in the
electron density δni ̸= 0 manifest themselves in strictly
positive contributions to the local parity. An alterna-
tive and more useful operator representation of the local
parity reads

Pi =
(
1− 2c†i↑ci↑

)(
1− 2c†i↓ci↓

)
(5)

=1− 2
(
c†i↑ci↑ + c†i↓ci↓

)
+ 4 c†i↑c

†
i↓ci↓ci↑ ,

and its corresponding expectation value with respect to
the many-body state |n⟩ can be expressed as

⟨n|Pi|n⟩ = 1− 2ρ
(1)
ii + 4ρ

(2)
iiii , (6)

where

ρ(1)qp =
∑
σ

⟨n|c†qσcpσ|n⟩ , (7)

denotes the one-electron reduced density matrix (1-
RDM) and

ρ(2)qprs = ⟨n|c†q↑c
†
p↓cr↓cs↑|n⟩ , (8)

denotes the two-electron reduced density matrix (2-
RDM) respectively. If we choose |n⟩ = |ψ0⟩, with |ψ0⟩ a
good approximation of the ground state of the system, we
can identify orbitals ϕi for which ⟨Pi⟩0 = ⟨ψ0|Pi|ψ0⟩ =
−1 + ε, with ε → 0, as spin-like orbitals of the system.
In general, the spin-like orbitals of the system do not
coincide with the basis orbitals. We therefore require a
method to determine the set {ϕi} of orthonormal linear
combinations of basis orbitals, for which the local parities
most closely approach {pi} = −1.

C. Local parity optimization of the orbital basis

We propose an iterative procedure to determine the
particular orbital basis in which the local parities are ex-
tremal. For this we attempt a sequence of unitary pair-
wise rotations of the orbital fermionic operators given by

cqσ = cos θ ciσ + sin θ cjσ ,

cpσ = − sin θ ciσ + cos θ cjσ , (9)

with the same rotation being performed for the Hermi-
tian conjugates of the operators. From the reduced den-
sity matrices ρ(1) and ρ(2) we can compute the local par-
ity of an orbital ϕq, which results from the linear combi-
nation of orbitals ϕi and ϕj , as ⟨Pq⟩0(θ). The local parity
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⟨Pq⟩0(θ) is an analytic, 2π-periodic function of the rota-
tion angle θ. We find extremal points θn of the function
⟨Pq⟩0(θ) in the domain θ ∈ [0, 2π) from

d⟨Pq⟩0
dθ

∣∣∣∣
θn

= 0 , (10)

and select solutions θn that satisfy

d2⟨Pq⟩0
dθ2

∣∣∣∣
θn

̸= 0 . (11)

The analytic expression for the derivatives of the function
⟨Pq⟩0(θ) are shown in appendix A. If a solution θm ex-
ists which satisfies d2⟨Pq⟩0/dθ2|θm > 0 and ⟨Pq⟩0(θm) ≤
⟨Pq⟩0(θl)∀θl ∈ θn, we accept the rotation attempt i→ q
and j → p with rotation angle θm and we reject the ro-
tation attempt otherwise. By repeating the procedure
for each pair of basis orbitals ϕi and ϕj , we arrive at
at an orthonormal basis in which the local parities have
taken up extremal values. We then identify the orbitals
ϕq of the resulting basis for which ⟨Pq⟩0 = −1 + ε, with
ε an arbitrary small, positive value, as the spin-like or-
bitals of the system. Basis orbitals ϕp with a local parity
⟨Pp⟩0 ≃ +1 can be regarded as beneficial for the purpose
of separating the system’s spin degrees of freedom from
their respective environment since they experience exclu-
sively a transfer of an even number of particles only, such
that the spin degree of freedom of electrons occupying the
orbitals ϕp becomes insignificant.

D. Perturbative similarity transformation

In principle, any Hamiltonian can be completely diag-
onalized by means of a particular unitary transformation

U . In practice, finding the particular unitary transforma-
tion U often requires a complete diagonalization of the
Hamiltonian to begin with. Here we recap how a pertur-
bative similarity transformation, namely the Schrieffer-
Wolff transformation [4, 6], can be used to determine an
approximate transformation operator U , or the generator
S thereof, which does not diagonalize the Hamiltonian
fully, but yields a block-diagonal Hamiltonian instead.
These blocks consist of the orthonormal states in the
Hilbert space H that share the a given choice of char-
acteristics, e.g. the local particle quantum number ni.
We will denote the set of terms in the Hamiltonian that
are already block-diagonal in the intial basis as H0. The
remaining terms connect different blocks, i.e are block-
offdiagonal, and are denoted V . The complete Hamilto-
nian thus reads

H = H0 + V . (12)

A unitary similarity transformation of the Hamiltonian
is given by

H̃ = U†HU = e−S (H0 + V ) eS = e−SH0e
S + e−SV eS ,

(13)

where S is an anti-Hermitian operator. One refers to it as
the generator of the Schrieffer-Wolff transformation. The
key problem of the Schrieffer-Wolff transformation be-
comes finding the generator S such that the transformed
Hamiltonian H̃ becomes entirely block-diagonal. In or-
der to arrive at an equation for S one makes use of the
Campbell-Baker-Hausdorff formula to expand

H̃ = eSHe−S =

∞∑
m=0

1

m!
[S, H]m = H + [S, H] +

1

2
[S, [S, H]] + . . . , (14)

where for generators S satisfying ∥S∥ ≪ ∥H0∥, with ∥ · ∥
a suitable norm, one can approximate the expression as

H̃ = H0 + V + [S, H0] + [S, V ] +O(S2) . (15)

Considering that commutators of pairs of block-diagonal
operators or pairs of block-offdiagonal operators re-
spectively generally become block-diagonal, while the
commutators of block-diagonal operators with block-
offdiagonal operators become block-offdiagonal, one
chooses the equation

[S, H0] = −V ⇔ [H0, S] = V , (16)

by which one can determine the generator S which re-
moves the block-offdiagonal terms V of the Hamiltonian.
If a solution S to eq. (16) exists, one can use

[S, [S, H0]] = [S, −V ] = − [S, V ] ̸∈ O(S2) , (17)

to simplify the expression for the transformed Hamilto-
nian

H̃ = e−S (H0 + V ) eS ≃ H0 +
1

2
[S, V ] +O(S2) , (18)

where the terms originating from [S, V ]/2 contain the
perturbative corrections arising from the consecutive ap-
plication of two block-offdiagonal operators. A subse-
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quent projection to the subspaces

Pn =
∑
p∈Pn

|p⟩⟨p| , (19)

yields the block-diagonal Hamiltonian

H̃block−diagonal =
∑
n

PnH̃Pn , (20)

where n denotes the distinct blocks of the Hilbert space.

E. Symmetry specification of block-offdiagonal
operators

The block-offdiagonal part of the Hamiltonian V con-
sists of a sum of block-offdiagonal terms. These in turn
comprise products of individually block-offdiagonal oper-
ators x. In the following we detail a method to decom-
pose generic block-offdiagonal operators x into distinct
components. Each of the components exclusively con-
nects two distinct blocks of the Hilbert space H, often
associated with distinct quantum numbers of a symme-
try of the system. A given block-offdiagonal operator
x : H → H satisfies

[H0, x] = εz ̸= 0 , (21)

where ε denotes an arbitrary scalar and z : H → H an
arbitrary operator. Let A be a diagonal operator in the
initial basis. It can be identical to the symmetry operator
differentiating the blocks of the Hilbert space, but is not
required to be. One can use the spectrum of A to expand
the operator x as

x =
∑
q

xq =
∑
q

βq
∏
i̸=q

(A− ai)x , (22)

where the different xq couple the target subspace asso-
ciated with the eigenvalue aq of A to other subspaces of
the Hilbert space. If the operator A satisfies

[x,A] = 0 , (23)

then both subspaces, initial and final, coupled via xq are
specified by the eigenvalue aq. This is possible for the

fermionic creation and annihilation operators c†iσ and ciσ
and is displayed in appendix B. The coefficients βq are
solutions to the equation

βq
∏
i ̸=q

(aq − ai) = 1 . (24)

The symmetry-specified block-offdiagonal operators xq
satisfy [

xq, x
†
q′

]
∝ δqq′ , (25)

where the operator x†q denotes the Hermitian conjugate
of the operator xq.

F. Schrieffer-Wolff transformation as a system of
linear equations for unique block-offdiagonal

operators

Following the procedure outlined in Section IID we
separate the Hamiltonian of the system into its block-
diagonal and block-offdiagonal contributions as

H = H0 + V . (26)

The block-offdiagonal contribution V comprises each
block-offdiagonal term v

V =
∑
{v}

αv


∏

j

oj
∏
i

xi

+

∏
j

oj
∏
i

xi

†
 (27)

=
∑
{v}

αv


∏

i,j

oj
∑
q(i)

xiq(i)

+

∏
i,j

oj
∑
q(i)

xiq(i)

†
 ,

where
∏

i x
i denotes sequences of individually block-

offdiagonal operators,
∏

j o
j denotes sequences of indi-

vidually block-diagonal operators, and xiq(i) denotes the

symmetry-specified components of the operator xi. We
introduce a vector spaces Vh

0 and Va
0 , for which each

unique pair of Hermitian, or anti-Hermitian respectively,
symmetry-specified operator sequences in V corresponds
to a unique orthonormal basis vector

êv =


(∏

j o
j
∏

i x
i
q(i)

)
+
(∏

j o
j
∏

i x
i
q(i)

)†
∈ Vh

0(∏
j o

j
∏

i x
i
q(i)

)
−
(∏

j o
j
∏

i x
i
q(i)

)†
∈ Va

0

,

(28)

where Vh denotes the Hermitian vector space and Va the
anti-Hermitian vector space. We define the linear map

L :
Vh
0 → Va

1

Va
0 → Vh

1
, (29)

where the action of the linear map on a vector êv is given
by

L êv = [H0, êv] , (30)

where

(Lêv) ∈ Va
1 if êv ∈ V h

0

(Lêv) ∈ Vh
1 if êv ∈ V a

0
, (31)

with

dim (V1) ≥ dim (V0) , (32)

since V1 includes additional unique operator sequences
generated by [H0, êv]. In the vector spaces V we
can translate equation (16) for the generator S of the
Schrieffer-Wolff transformation to

L S⃗ = V⃗ ⇔ [H0, S] = V , (33)
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with S⃗ ∈ Va
0 and V⃗ ∈ Vh

1 . Determining the generator S
of the Schrieffer-Wolff transformation becomes equivalent
to solving the set of linear equations (33). In general one
finds

rank(L) ≤ dim (V0) ≤ dim (V1) , (34)

and there is consequently no unique solution S⃗ to the
set of equation (33). It is intuitive that the terms of
V approximately bring about transitions between dis-
tinct eigenstates of H0 belonging to different blocks of
the Hilbert space. This is reflected by

[
H0, ê

h
v

]
=

(
∆E0,v

∏
l

ol

)
êav , (35)

where ∆E0,v denotes the eigenvalue difference between
the two eigenstates of H0 and

∏
l o

l denotes an arbitrary
sequence of individually block-diagonal operators. From
equations (33) and (35) we can approximate

∥S⃗∥ ≈

√√√√∑
{v}

(
αv

∆E0,v

)2

, (36)

which highlights the necessity for a significant energy
gap ∆E0,v between the separate subspaces of the Hilbert
space coupled by V in order for the series expansion of
H̃ to O(S2) to be considered a good approximation. We
consider terms v for which

α2
v

|∆E0,v|
≥ 1 , (37)

to be the resonant terms of V which should be retained
in the transformed Hamiltonian H̃. To identify these
resonant terms of V , we employ a singular value decom-
position (SVD) of the linear map L and arrive at

L = UΣW † = U (Σ> +Σ<)W
† = Lgapped + Lresonant ,

(38)

where Σ> comprises the singular values

σi >
1

Nv

∑
{v}

√
α2
v , (39)

where Nv denotes the number of terms v. We define the
Moore-Penrose pseudoinverse of L that acts exclusively
on the gapped, i.e. non-resonant, terms in V as

L+
gapped =

(
W Σ+

> U
†) , (40)

where Σ+
> denotes the pseudoinverse of Σ>. In the ab-

sence of a unique solution to (33), the closest approxi-
mate solution [12] is given by

S⃗ =
(
L+
gappedV⃗

)
∈ Va

0 , (41)

and the resulting transformed Hamiltonian reads

H̃ = H0 + Vresonant + [S, Vresonant] +
1

2
[S, Vgapped] ,

(42)

where Vgapped = [H0, S] and Vresonant = (V − Vgapped).
The quality of the approximate transformed Hamiltonian
H̃ and its respective H̃block−diagonal (see eq. 19) for the
description of the low energy dynamics of a given system
is discussed in Sections III C to III E.

G. Full workflow

In the following we outline the steps of the workflow
that we use derive an effective spin-bath model Hamilto-
nian from a first principles description of a material.
a. Computation of the required system information

We start with an ab-initio electronic structure calcula-
tion [13] of the material to determine its ground state.
The electronic structure method needs to be a post-
Hartree-Fock or related method, this excludes density
functional theory, to capture the effect of correlations in
the two-particle reduced density matrix ρ(2). From the
electronic structure calculation we obtain the single par-
ticle basis orbitals for the one-electron and two-electron
integrals which specify the Hamiltonian description. For
the ground state of the calculation we compute the one-
particle and two-particle reduced density matrices ρ(1)

and ρ(2).
b. Determination of spin-like basis orbitals We uti-

lize the reduced density matrices to assign a local parity
⟨Pi⟩0 to the basis orbitals ϕi. We then perform pair-
wise rotations of the basis orbitals to determine the ba-
sis in which the local parities of the basis orbitals is ex-
tremized. If there exist optimized basis orbitals ϕq with
⟨Pq⟩0 + 1 < ε, where we typically chose ε ≤ 10−1, we
proceed with the subsequent steps of the workflow. If no
spin-like orbitals are found, we terminate the workflow.
c. Schrieffer-Wolff transformation of the Hamilto-

nian We use our Schrieffer-Wolff transformation ap-
proach to integrate out the valid terms of the Hamil-
tonian that modify the electron density in the spin-like
orbitals which leads to renormalized couplings of the elec-
tron spins in the spin-like orbitals to the environment.
The valid terms are the ones that couple subspaces of
the Hilbert space between which there exists a signifi-
cant energy gap.
d. Construction of the effective spin-bath Hamilto-

nian The transformed Hamiltonian H̃ is projected to
the particular subspace of the Hilbert space where the
electron density of spin-like orbitals ϕq is fixed to nq ≡ 1.
Utilizing the identity nq = nq↑+nq↓ ≡ 1 fermionic opera-
tors acting on the spin-like operators are substituted with
the corresponding spin operators. The resulting Hamil-
tonian PH̃P is the effective spin-bath representation of
the material.
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FIG. 1: Schematic representation of the lattice model
described by the Hamiltonian (44). The lattice sites Ai

are shown in grey. On the orange lattice sites Bi the
fermions experience a strong repulsive Hubbard

interaction U which energetically discourages nBi
̸= 1.

The hybridization between the lattice sites Ai and Ai+1

is given by t < 0. We impose periodic boundary
conditions via a hybridization t between the lattice sites
AN=4 and A1. There is a small hybridization 0 > V > t
between lattice sites Ai and Bi. The local Hubbard
density-density interaction of strength U ≫ |t| is

strongly repulsive. The connectivity and the coupling
constants of the lattice models are chosen such that the
lattice sites Bi should be good realizations of spin-like

orbitals.

e. Representation on a device (optional) The effec-

tive spin-bath model Hamiltonian PH̃P is re-expressed
in terms of the spin operators that are realized on the
specific device.

III. EXAMPLES

Here we present a selection of systems to which we have
applied our methods for identifying spin-like orbitals and
for deriving effective spin-bath model Hamiltonians. In
Sections IIIA and III B we showcase the spin identifi-
cation procedure for a lattice model and for a radical
molecular system. In Sections III C and IIID we com-
pare our Schrieffer-Wolff transformation method with the
established results for two well-known model Hamiltoni-
ans. In sec. III E we then apply the complete workflow to
molecular chromium bromide and discuss the accuracy of
the effective spin-bath model Hamiltonians.

A. Spin-bath chain model

As a first test of the parity optimization procedure we
introduce a simple lattice model. We have chosen the
connectivity of the lattice sites and the coupling con-
stants such that for the lattice sites Bi an electron den-
sity ⟨nBi

⟩0 ̸= 1 is strongly discouraged. The lattice sites

Bi should consequently be good realizations of spin-like
orbitals. The Hamiltonian of the lattice model reads

H =
∑
iσ

(
t a†i+1σaiσ + V a†iσbiσ + h.c.

)
(43)

+ U
∑
i

(
b†i↑bi↑ −

1

2

)(
b†i↓bi↓ −

1

2

)
,

where a†iσ creates a fermion of spin σ on lattice site Ai

and b†iσ creates a fermion of spin σ on lattice site Bi.
We impose periodic boundary conditions for the lattice
sites Ai. A graphic representation of the lattice model
is displayed in Fig. 1. The coupling constants satisfy
U ≫ |t| > |V | and 0 > V > t. The repulsive Hubbard
interaction on lattice sites Bi in combination with the
weak hybridization betweenBi andAi places a significant
energy penalty on nBi

̸= 1. Low-energy eigenstates of the
Hamiltonian should therefore satisfy nBi

≡ 1 and the
lattice sites Bi be considered good realizations of spin-
like orbitals.

We have calculated the low energy spectrum of the
Hamiltonian of a chain of M = 4 unit cells contain-
ing N = 8 fermions using a numerical diagonalization
method. The reduced density matrices ρ(1) and ρ(2) have
been computed for the corresponding ground state |ψ0⟩.
The eigenstates of ρ(1) form the natural orbital basis. We
find eigenvalues ⟨ni⟩ = 1 of ρ(1) for Nϕi = 2 natural basis
orbital ϕi. The local parities of the natural orbitals are
shown in Fig. 2a.

We find ⟨Pi⟩0 > 0 for each natural basis orbital ϕi.
This indicates that the ground state |ψ0⟩ features signif-
icant contributions from Slater determinants |ξ⟩ where
ni|ξ⟩ = 0|ξ⟩ or ni|ξ⟩ = 2|ξ⟩ respectively for each natural
basis orbital. The average of these contributions yields
⟨ni⟩0 = 1, but the contributions ⟨ψ0|ξ⟩ ≠ 0 manifest
themselves in strong fluctuations |δni| ≫ 0. The lat-
tice model highlights that the natural orbitals are gener-
ally not suitable candidates for spin-like orbitals, because
they do not satisfy the necessary criterion δni → 0. We
point out that the original basis had already contained
the spin-like latttice sites Bi. In the given example the
natural orbital basis fails to be a good starting point in
the search for spin-like orbitals. To test the capability of
the parity optimization procedure we have used the nat-
ural orbital basis as the starting point, because we have
previously found them to be sufficiently far from the opti-
mal original basis. The results of the parity optimization
are shown in Fig. 2b.

We find Nϕq ≥ 4 orbitals ϕq with local parity ⟨Pq⟩0 ≃
−1. These optimized orbitals ϕq coincide with the origi-
nal lattice sites of Bi. Despite the intentionally difficult
starting conditions the parity optimization procedure was
able to recover the original basis featuring the lattice sites
Bi that had been designed to be spin-like.
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FIG. 2: Local parity ⟨Pq⟩0 of the basis orbitals of (a)
the natural orbitals basis and (b) the parity optimized

basis of the spin-bath chain model described by
eq. (44). (a) The dark grey line shows the local parities
of the original basis orbitals and the dashed orange line
indicates the local parities of the natural basis orbitals.
The blue circles display the average electron density

⟨nq⟩0 in the natural basis orbitals. In the natural basis
we find Nϕq

= 2 orbitals ϕq for which ⟨nq⟩0 = 1, but the
respective values of the local parities ⟨Pq⟩0 > 0

highlight that |δnq| ≫ 0. (b) The dashed orange line
now displays the local parities of the parity optimized

basis orbitals. The blue circles show the average
electron density ⟨nq⟩0 in these optimized basis orbitals.
In the optimized basis we find Nϕq

≥ 4 orbitals ϕq with
local parity ⟨Pq⟩0 ≃ −1. We also observe ⟨nq⟩0 = 1 for
each orbital. The orbitals ϕq≤3 of the optimized basis

are considered spin-like.

(a)

(b)

(c)

FIG. 3: (a) Molecular structure of the closed
configuration of the molecule para-benzyne (C6H4). (b)
Isosurface of one spin-like orbital ϕq=1 of para-benzyne.

(c) Isosurface of the other spin-like orbital ϕq=2 of
para-benzyne.

B. Closed configuration of para-benzyne

As a second testbed for the parity optimization pro-
cedure we have adopted the molecule para-benzyne
C6H4 [14]. The molecule is depicted in Fig. 3a. In its
closed configuration para-benzyne is known to feature
two spin-like orbitals that are non-trivial linear combi-
nations of the original basis orbitals [15]. The complete
active space self-consistent field (CASSCF) [13, 16, 17]
method was used to compute the reduced density matri-
ces ρ(1) and ρ(2) in the CASSCF ground state. The basis
set comprises Nϕi

= 62 CASSCF canonical molecular or-
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bitals of which Nϕi,a
= 12 orbitals form the active space

of the calculation. The Hamiltonian description of the
molecule in the basis reads

H =
∑
ijσσ′

tσσ
′

ij c†iσcjσ′ +
∑

ijklσσ′

V σσ′

ijkl c
†
iσc

†
jσ′ckσ′clσ , (44)

where the one-electron integrals tσσ
′

ij and two-electron in-

tegrals V σσ′

ijkl have been determined as part of an ab-initio
calculation. The parity optimization procedure was per-
formed for two sets of initial basis orbitals. The first set
contained all Nϕi

= 62 basis orbitals of the CASSCF cal-
culation. The second set was restricted to the Nϕi

= 12
basis orbitals ϕi with local parity ⟨Pi⟩0 < 9.5 × 10−1,
which coincides with the active space of the CASSCF
calculation. The local parities in the initial and the op-
timized basis are displayed in Fig. 4.

The differences between the complete and reduced ba-
sis sets are insignificant when only considering the or-
bitals of smallest local parity after optimization. Discrep-
ancies between the two optimizations can be observed for
basis orbitals of larger local parity. In this case the access
to the complete set of basis orbitals allows for further re-
duction of the local parity of some basis orbitals in the
optimization. After parity optimization we identify two
basis orbitals ϕq for which the local parity takes the value
⟨Pq⟩0 ≃ −9.4 × 10−1. This is sufficiently small a value
of the local parity to be considered spin-like. The local
parities of the remaining basis orbitals are significantly,
larger i.e. ⟨Pp⟩0 > −5× 10−1. The two spin-like orbitals
ϕq are the linear combinations

ϕq(r⃗) ≃
1√
2
[ϕa(r⃗)± ϕb(r⃗)] , (45)

of two specific CASSCF canonical molecular orbitals ϕa
and ϕb of the original basis. This is consistent with re-
sults from previous studies of the closed configuration of
para-benzyne [15]. An isosurface image of the two spin-
like orbitals ϕq is displayed in figures 3b and 3c.

C. Single impurity Anderson model

The intuitive first application example for our pro-
posed Schrieffer-Wolff transformation approach is the sin-
gle impurity Anderson model (SIAM) [18]. It is the
model Hamiltonian for which this type of perturba-
tive similarity transformation was originally proposed by
Schrieffer and Wolff. The generator of the transforma-
tion and the transformed Hamiltonian are both known
analytically. The SIAM describes a localized magnetic
moment in a system of non-interacting electrons. The

0 20 40 60
Index (i, q) in the respective basis
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q) Initial basis Pi 0

Opt. full basis Pq 0

Opt. reduced basis Pq 0
nq 0

FIG. 4: Ground state local parities ⟨Pi⟩0 of the basis
orbitals of para-benzyne (C6H4) in the initial CASSCF
canonical molecular orbitals basis (dark grey line) and
the two different parity optimized bases (dashed orange

and blue). The local parities ⟨Pi⟩0 of the original
atomic basis orbitals each satisfy ⟨Pi⟩0 > 8.5× 10−1, so
the initial basis orbitals are not considered spin-like.
The local parities ⟨Pq⟩0 of the basis orbitals ϕq in the
optimized basis, where the full set of N = 62 orbitals

has been optimized, are shown in orange. The resulting
local parities ⟨Pq⟩0, where the subset of N = 12 basis
orbitals ϕi with initial local parity ⟨Pi⟩0 < 9.5× 10−1

has been optimized, are displayed in blue. The electron
densities in the optimized basis orbitals is shown as
green circles. The restricted set turns out to be
equivalent to the active space of the CASSCF

calculation used to obtain the reduced density matrices
ρ(1) and ρ(2). The local parity ⟨Pq⟩0 ≃ −9.4× 10−1 of
two specific optimized basis orbitals ϕq is sufficiently
small for the criteria ⟨nq⟩0 ≡ 1 and |δnq| ≃ 0 to be
simultaneously fulfilled. The isosurfaces of these
spin-like orbitals are displayed in Figs. 3b and 3c.

SIAM Hamiltonian reads

H =
∑
σ

[
−t

N∑
i=1

(
c†i,σci−1,σ + h.c.

)
− V0

(
d†σc0,σ + c†0,σdσ

)]
(46)

+ U

(
d†↑d↑ −

1

2

)(
d†↓d↓ −

1

2

)
,

where d†σ creates an electron with spin σ on the impurity

site and c†iσ creates an electron of spin σ on the lattice
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site i of the remainder of the system. If one identifies

H0 =− t

N∑
i=1,σ

(
c†i,σci−1,σ + h.c.

)
+ U

(
d†↑d↑ −

1

2

)(
d†↓d↓ −

1

2

)
(47)

V =− V0
∑
σ

(
d†σc0,σ + c†0,σdσ

)
, (48)

the canonical transformation by Schrieffer and Wolff [4,
19, 20] yields the Hamiltonian

H̃ =−
∑

k,k′σσ′

Jkk′
(
d†σσ⃗dσ′

)
·
(
c†kσ′ σ⃗ck′σ

)
(49)

+
∑
kσ

(
Wkk +

Jkk
2
d†σ̄dσ̄

)
c†kσckσ

+
∑
kk′σ

Jkk′

4
c†kσ̄c

†
k′σdσdσ̄ + h.c.+

∑
kσ

εkc
†
kσckσ ,

where the parameters

Vk ∝ V0 , (50)

εk = −2t cos k , (51)

are the consequence of a Fourier transformation to mo-

mentum space k = −Nπ
2(N+1) , . . . ,

(N−1)π
2(N+1) , while the effec-

tive coupling constants

Jk′k = Vk′Vk

(
1

εk − U
2

+
1

εk′ − U
2

− 1

εk + U
2

− 1

εk′ + U
2

)
,

(52)

Wk′k =
Vk′Vk
2

(
1

εk + U
2

+
1

εk′ + U
2

)
, (53)

are the result of the Schrieffer-Wolff transformation. A
subsequent projection P of the Hamiltonian H̃ to the
subspace of the Hilbert space in which the impurity site
is singly occupied yields the Kondo Hamiltonian [21]

PH̃P =
∑
kσ

εkc
†
kσckσ −

∑
kk′σσ′

Jk′kS⃗d · c†k′σσ⃗ckσ′ , (54)

where the magnetic impurity is coupled to the elctrons

in the system via its spin degree of freedom S⃗d =
(Sx

d , S
y
d , S

z
d) only.

We have studied a SIAM Hamiltonian of length N = 9
system lattice sites and an additional site representing
the magnetic impurity with hybridization between sys-
tem and impurity V0/t = 1/4. The hybridization t be-
tween system lattice sites represents the energy scale
of the system. We have fixed the electron number
Nelectrons = 10 and

∑
i σ

z
i = 0 to perform a ground state

computation using a numerical diagonalization method
for a range of impurity interaction strength values 3 ≤
U/t ≤ 40. We have calculated the local parity ⟨Pd⟩0

101

Interaction strength in Ut

10 4

10 3

10 2

10 1

100

En
er

gy
 d

ev
ia

tio
n 

in
 U

E 0 t

H
H

Parity Pd 0 + 1

FIG. 5: Rescaled ground state energy difference
U ×∆E0/t = U × |E0,(P)H̃(P) − E0,H |/t between the

ground state of the SIAM Hamiltonian and the
transformed Hamiltonians H̃ and PH̃P as a function of

the interaction strength U/t. The dark grey line
represents the scaled energy difference for the

transformed Hamiltonian H̃. The dashed orange
displays U ×∆E0/t for the effective Hamiltonian PH̃P
where the impurity site is restricted to single occupancy
nd ≡ 1. The solid blue line displays the local parity
⟨Pd⟩0 of the impurity site in the true ground state for

each value of the interaction strength U/t.

of the impurity site in the ground state. We have used
our Schrieffer-Wolff transformation approach to numeri-
cally determine the Hamiltonians H̃ and PH̃P for each
value of the interaction strength U/t and have com-
pared them with the established and analytic results (50)
and (54). The numerical results match the analytic ex-
pressions exactly. We have also calculated the discrep-
ancy ∆E0 = |E0,(P)H̃(P) − E0,H | between the ground

state energies E0 of the SIAM Hamiltonian H (47) and
the energy of respective ground states of the transformed
Hamiltonians H̃ and PH̃P. The ground state local parity
⟨Pd⟩0 of the magnetic impurity and the rescaled ground
energy discrepancies U∆E0/t as a function of the inter-
action strength U/t are shown in Fig. 5.

For values of the interaction strength U/t ≤ 4, we ob-
serve a several pronounced energy differences between the
SIAM ground state and the ground states of the trans-
formed and effective Hamiltonians. In this weak interac-
tion regime, the chemical potential of the impurity lies
within the bandwith D = 4t of the tight-binding chain
representing the remainder of the system. There is then
no energy gap between the subspace of the Hilbert space
where the impurity is singly occupied and the rest of the
Hilbert space. In the absence of an energy gap, limiting
the series expansion (14) to first order in S is not a justi-
fied approximation. For values of the interaction strength
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U/t > 4 we observe a decrease of the energy discrepancy
∆E0 of the ground state energies of the SIAM Hamil-
tonian and the transformed and effective Hamiltonians
respectively as a power-law (U/t)−α of the interaction
strength with an exponent α > 2. The energy discrep-
ancy quickly becomes small with respect to the energy
scale t and we find ∆E0/t → 0 for U/t → ∞. For the
ground state local parity on the impurity site we observe
7×10−2 > (⟨Pd⟩0+1) > 3×10−2 in the regime U/t ≤ 4.
For larger values of the interaction strength U/t > 4 we
find that the local parity of the impurity site approxi-
mates a polynomial function (⟨Pd⟩0+1)(U/t) ∝ (U/t)−β

with the exponent β ≈ α − 1. The local parity of the
impurity site appears to be a good indicator of quality
of the approximation (15) if H̃ is supposed to become
block-diagonal in the subspaces of the Hilbert space with
different particle number nd on the impurity site. This
supports our claim that a local parity (⟨Pd⟩0 + 1) → 0
signals that the corresponding site can be represented as
a spin degree of freedom and that PH̃P is then a good
effective Hamiltonian to describe the low-energy spin dy-
namics of the system. The energy discrepancy ∆E0 is
identical for both H̃ and PH̃P. In the case of the SIAM
Hamiltonian the Schrieffer-Wolff transformation yields a
Hamiltonian H̃ that does no longer couple the distinct
subspaces characterized by nd = 1 and nd ̸= 1. We find
that our Schrieffer-Wolff transformation method recov-
ers the analytically known results and that the ground
state of effective Hamiltonian PH̃P approaches the true
ground state as U/t→ ∞ at a rate faster than (U/t)−1.

D. Disordered Fermi-Hubbard model

Another significant model Hamiltonian, for which the
analytic expression for the Schrieffer-Wolff transformed
Hamiltonian is known, is the Fermi-Hubbard model [22,
23]. It is translation invariant and describes the elec-
trons in orbitals with small nearest-neighbor hybridiza-
tions t where electrons occupying the same orbital exert a
density-density interaction U on each other. In the limit
U/t → ∞ and Nelectrons/Norbitals = 1 the transformed

Hamiltonian H̃ reduces to the well-known Heisenberg
model of interacting spins [7, 11]. Here, we present the
Schrieffer-Wolff transformation for the disordered Fermi-
Hubbard (dFH) chain. Its Hamiltonian is given by

H =

N∑
i=1

∑
σ

[
εic

†
i,σci,σ − t

(
c†i,σci−1,σ + h.c.

)]
(55)

+ U

N∑
i=1

(
c†i↑ci↑ −

1

2

)(
c†i↓ci↓ −

1

2

)
,

where the values εi have been randomly drawn from
a normal distribution of width σ = t/2. The corre-
sponding Hamiltonian after Schrieffer-Wolff transforma-
tion and projection to the subspace of the Hilbert space

where
∑

σ c
†
iσciσ = 1 for every site i of the chain reads

PH̃P =

N∑
i=1

Ji S⃗i · S⃗i−1 +

N∑
i=1

εi , (56)

where S⃗i = (Sx
i , S

y
i , S

z
i ) denotes the spin operator acting

on the electron spin of the electron located on chain site

i and the coupling constants Ji =
4t2

U + δi feature small
local renormalizations δi caused by the disorder.

We have examined a disordered Fermi-Hubbard Hamil-
tonian of length N = 10 chain sites and periodic bound-
ary conditions ci=0,σ = ci=N,σ. The hybridization t be-
tween chain sites represents the energy scale of the sys-
tem. We have fixed the electron number Nelectrons = 10
and

∑
i σ

z
i = 0 to perform a ground state computa-

tion using a numerical diagonalization method for a
range of repulsive Hubbard interaction strength values
3 ≤ U/t ≤ 40. We have computed the average local par-

ity (⟨Pi⟩0 + 1) of the chain sites in the ground state. We
have used our Schrieffer-Wolff transformation approach
to numerically determine the Hamiltonians H̃ and PH̃P
for each value of the interaction strength U/t and have
compared them with the established result (56). The
numerical results match the analytic expressions exactly.
We have again calculated the discrepancy ∆E0 between
the ground state energies E0 of the dFH Hamiltonian
H (55) and the energy of respective ground states of the

transformed Hamiltonians H̃ and PH̃P. The ground
state average local parity ⟨Pi⟩0 + 1 of the chain sites
and the rescaled ground energy differences U∆E0/t as
a function of the interaction strength U/t are displayed
in Fig. 6.

For values of the interaction strength U/t ≤ 10, we

observe a significant energy difference ∆E0 for both H̃
and PH̃P which is decreasing with U/t at an increasing
rate faster than (U/t)−1. At values U/t > 10 the energy
difference becomes small with respect to the energy scale
t and is approaching ∆E0 → 0 for U/t → ∞ at a rate
faster than (U/t)−2. Similarly we find average local par-

ity (⟨Pi⟩0 +1) > 10−1 for U/t ≤ 10. This highlights that
the chain sites cannot be considered good realizations
of spin degrees of freedom in this regime. The trans-
formed Hamiltonian H̃ can consequently not be consid-
ered a good approximation to the Hamiltonian H (55).
This is supported by the respective values of ∆E0/t ≥ 1.

As (⟨Pi⟩0+1)(U/t) ≪ 10−1 for U/t > 10 we also observe
that the transformed Hamiltonian becomes an ever bet-
ter approximation of the original dFH Hamiltonian and
∆E0/t≪ 1. For the disordered Fermi-Hubbard Hamilto-
nian we again find that our Schrieffer-Wolff transforma-
tion method recovers the analytically known results. The
ground state of effective Hamiltonian PH̃P approaches
the true ground state as U/t → ∞ at a rate faster than

(U/t)−1 and the crossover at which PH̃P becomes a good
description of the low-energy dynamics of the model is
characterized by (⟨Pi⟩0 + 1) < 10−1
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FIG. 6: Rescaled energy difference U ×∆E0/t between
the true ground state of the disordered Fermi-Hubbard
chain and the ground states of H̃ (dark grey) and of the

Heisenberg Hamiltonian PH̃P (dashed orange), where
the chain sites are replaced with local spin degrees of
freedom, and the true ground state. The blue line

displays the average local parity ⟨Pi⟩0 = 1
N

∑N
i=1⟨Pi⟩0

of the individual chain sites i in the ground state.

E. Molecular Chromium bromide

An interesting testbed for our spin mapping approach,
is the class of 2D magnetic materials, which have recently
been discovered experimentally[24, 25]–seemingly in con-
tradiction to the Mermin-Wagner theorem. A common
approach to study 2D magnetic materials from first prin-
ciples is to perform a so-called “DFT+U” calculation,
followed by a Wannierization and the extraction of a
classical Heisenberg-like spin model from the resulting
tight-binding description of the material (cf. [26] for a
recent study on Chromium tri-halides). The spin map-
ping proposed in this work represents an alternative for
extracting the effective spin model. The key difference
to the aforementioned workflow to extract effective spin
models using DFT is: 1) A correlated quantum-chemistry
(wave-function) approach is used. 2) The Hamiltonian
resulting from the Schrieffer-Wolff transformation is still
a quantum mechanical Hamiltonian, i.e., the classical
limit is not implied by the spin mapping approach. Let
us point out that we neither claim that a full quantum
mechanical treatment of the effective spin model is re-
quired for getting an accurate spin model for (ferromag-
netic) transition-metal tri-halides, nor that a correlated
method is required for the electronic-structure calcula-
tion (however, standard DFT, without “+U”, is not suf-
ficient to capture the localized Chromium d-orbitals). We
would also like to note that the main purpose of the multi
reference calculation is the determination of the spin or-
bitals, i.e. the single particle basis. We can use hints from

multi reference methods to restrict the application of the
Schrieffer-Wolff transformation to a subset of all orbitals,
but this step is not essential.
As a minimal model for the CrBr3 solid, we consider a

minimal cluster, comprised of a single Chromium atom,
cut out from the periodic structure, together with an
octahedron of six Bromide atoms coordinating the tran-
sition metal. To study the spin mapping approach for
inter-Chromium couplings larger clusters must be consid-
ered, which is beyond the scope of the present work. As
a first step towards studying chromium bromide CrBr3
we hence study a CrBr3−6 cluster to test the applicability
of our approach.
We initially perform a series of electronic structure cal-

culations using the def2-QZVP basis set to generate the
information necessary for a search of the active space of
orbital basis of the system. We have used the Active
Space Finder (ASF), [27] an open-source to assist the
user in the selection of an active space. As expected, five
Chromium d-orbitals and p-orbitals from the outer Shell
of Bromide are suggested by the ASF and the active space
contains Nϕi = 9 basis orbitals. We have performed a
CASSCF calculation using the previously identified or-
bitals as the active space to compute the reduced den-
sity matrices ρ(1) and ρ(2) for the CASSCF ground state.
From this CASSCF calculation we have also obtained the
one-electron tσσ

′

ij and two-electron integrals V σσ′

ijkl in the
active space. We can write the Hamiltonian description
of the active space of chromium bromide as

H =
∑
ijσσ′

tσσ
′

ij c†iσcjσ′ +
∑

ijklσσ′

V σσ′

ijkl c
†
iσc

†
jσ′ckσ′clσ , (57)

where c†iσ creates an electron with spin σ in the orbital
ϕi of the active space. Using the reduced density matri-
ces we have performed a parity optimization of the basis
orbitals of the active space. Here, we first ran a parity
minimization procedure of the entire basis and identi-
fied Nϕq

= 3 spin-like orbital with respective parities

⟨Pq⟩0 ≤ −9.94× 10−1. In a subsequent optimization run
have maximized the local parities of the remaining basis
orbitals. The local parities of the initial basis orbitals ϕi
and the optimized basis orbitals ϕq are shown together
with the average electron density ⟨nq⟩0 in Fig. 7.

We find that three orbitals ϕi of the original basis al-
ready have smaller local parities ⟨Pi⟩0 ≤ −5.53 × 10−1.
The spin-like orbitals ϕq of the optimized basis feature
significant contributions by these initial basis orbitals
i = {4, 6, 7}. The orbitals ϕq read

ϕq=0 = −0.81ϕ7 − 0.49ϕ8 + 0.20ϕ5 + . . . , (58)

ϕq=1 = −0.86ϕ4 − 0.20ϕ7 + . . . ,

ϕq=2 = +0.95ϕ6 − 0.26ϕ1 + . . . ,

where . . . denotes minor contributions from other basis
orbitals ϕi.
We have performed a first numerical diagonalization

computation of the n = 20 lowest energy eigenstates of
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the effective Hamiltonian P0HP0, which acts exclusively
on the subspace of the Hilbert space characterized by
ni ≡ 1, for i ∈ {4, 6, 7}. In the calculation we have
fixed Nelectrons = 9 and

∑
i σ

z
i = 3. Subsequently, the

Hamiltonian H was transformed to the parity-optimized
orbital basis and a second numerical diagonalization with
the same constraints for electron number and total spin
σz was performed. For each of the n = 20 lowest energy
eigenstates of the Hamiltonian H we have computed the
local parity ⟨Pq∈S⟩n of the spin-like orbitals ϕq∈S , where
S = {0, 1, 2}. We have projected the Hamiltonian H in
the parity-optimized basis to the subspace of the Hilbert
space where the number of electrons in the spin-like or-
bitals ϕq∈S is fixed nq∈S ≡ 1. Using the same numerical
diagonalization method we have computed the n = 20
lowest energy eigenstates of this Hamiltonian PHP. For
the Schrieffer-Wolff transformation we have introduced a
cutoff c = 10−3 Hartree for the constituent terms of the
Hamiltonian. Hamiltonian terms of coupling constant |h|
smaller than the cutoff have been neglected in the cal-
culation of the transformed Hamiltonian H̃ to limit the
memory usage of the computation so as to have it run
on a regular notebook. The singular value decomposi-
tion in our Schrieffer-Wolff transformation approach was
performed using a Krylov subspace method with a maxi-
mum dimension of the subspace dim(K) = 500. The size
of the vector spaces V depends on the choice of the cutoff.
For chromium bromide we determine dim(V0)(c) = 4852
for the initial vector space and dim(V1)(c) = 1.5×106 for
the target vector space. The transformed Hamiltonian

H̃ =
∑

q∈S,σ

tσσqq c
†
qσcqσ +

∑
qp∈S

hqp S⃗q · S⃗p (59)

+
∑

q∈S,ij∈S̄,σσ′

hσσ
′

qqij c
†
qσcqσ′c†iσ′cjσ

+
∑

ij∈S̄,σσ′

tσσ
′

ij c†iσcjσ′ +
∑

ijkl∈S̄,σσ′

V σσ′

ijkl c
†
iσc

†
jσ′ckσ′clσ

+ . . . ,

resulting from the Schrieffer-Wolff transformation proce-
dure comprises Nh = 1.13 × 106 terms of which roughly
N|h|≥c = 22968 terms feature a coupling constant |h| ≥ c.
The projection of the transformed Hamiltonian to the
subspace of the Hilbert space, in which the spin-like or-
bitals ϕq∈S are replaced with spin degrees of freedom, is
given by

PH̃P =
∑
qp∈S

hqp S⃗q · S⃗p +
∑

q∈S,ij∈S̄,σσ′

hσσ
′

qij S⃗q · c†iσ′ σ⃗cjσ

(60)

+
∑

ij∈S̄,σσ′

tσσ
′

ij c†iσcjσ′

+
∑

ijkl∈S̄,σσ′

V σσ′

ijkl c
†
iσc

†
jσ′ckσ′clσ

+ . . . ,
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FIG. 7: Local parities of the active space basis orbitals
of molecular chromium bromide CrBr3+6 in the

CASSCF ground state. The dark grey line displays the
local parities of the CASSCF canonical molecular

orbitals, which form the active space of the system. The
dashed orange line indicates the local parities of the

optimized basis orbitals ϕq and the blue circles show the
average local electrons density of basis orbitals ϕq. The

green triangles indicate the average local electron
density of the original basis orbitals.

where S⃗q = (Sx
q , S

y
q , S

z
q ) and σ⃗ = (σx

σ′σ, σ
y
σ′σ, σ

z
σ′σ).

We have calculated the low energy spectrum of H̃ and
PH̃P again using a numerical diagonalization method
and with the same constraints for the quantum numbers.
The low-energy spectra of the five different numerical
diagonalization calculations are displayed in Fig. 8 (a).

We observe that the ground state energies of the
Hamiltonians PHP, H̃, PH̃P are within a fraction
of a Hartree from the true ground state energy E0,H

of the original Hamiltonian H. The respective en-
ergy differences are ∆E0,H̃ = (E0,H − E0,H̃) ≃ 1 ×
10−4 Hartree < (E0,H − E0,PH̃P) ≃ 7 × 10−3 Hartree <

(E0,H − E0,PHP) ≃ 8 × 10−3 Hartree. In contrast, we
find a significantly larger energy discrepancy (E0,H −
E0,P0HP0) ≃ 2 × 10−1 Hartree for the effective Hamil-
tonian P0HP0.

At first glance, we observe significant energy differ-
ences between the full Hamiltonian H and the effective
Hamiltonians PHP and PH̃P for the excited states,
while the transformed Hamiltonian H̃ appears to remain
a reasonable approximation to the original Hamiltonian
H with (En,H −En,H̃) ≤ 2× 10−3 Hartree. We find that
the n = 9 lowest excited states correspond to an average
local parity ⟨Pq∈S⟩n = 1

3

∑
q∈S⟨Pq⟩n ≥ − 1

3 . This implies
the presence of just one single spin degree of freedom
instead of the three, such that the effective three-spin-
system Hamiltonians PHP and PH̃P are not sensible
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FIG. 8: Low energy spectra of the active space
Hamiltonians of molecular chromium bromide. (a) The
dark grey line shows the eigenenergies of the n = 20

lowest eigenstates of the original active space
Hamiltonian H. We display the corresponding

eigenenergies of the effective Hamiltonian PHP (solid
blue), projected onto the subspace of the Hilbert space

where the spin-like orbitals are restricted to single
occupancy, the transformed Hamiltonian H̃ (dashed

orange), and the effective Hamiltonian PH̃P (dashed
green) acting on the subspace P in which the fermionic
degrees of freedom in the spin-like orbitals have been
substituted with spin degree of freedom. The low

energy spectrum of the effective Hamiltonian P0HP0,
acting only on the subspace characterized by ni ≡ 1, for
i ∈ {4, 6, 7}, is shown in purple. The average local

parity of the spin-like orbitals ⟨Pq∈S⟩n for the lowest
n = 20 eigenstates |n⟩ of the original Hamiltonian H is

displayed as grey circles. (b) Low energy spectra

reduced to the eigenstates |nS⟩ of H and H̃, which

satisfy ⟨Pq∈S⟩nS
≃ −1.

descriptions of the physics of these excited states. If we
reduce the spectrum to eigenstates of H with three spin-
like orbitals, i.e. average local parity ⟨Pq∈S⟩nS

≃ −1,
a different picture emerges. This reduced spectrum is
shown in Fig. 8 (b). The effective Hamiltonians PHP
and PH̃P appear to capture this reduced spectrum well
and we observe a maximum energy discrepancy ∆EnS =
2 × 10−2 Hartree. The effective Hamiltonian P0HP0 re-
mains a bad approximation throughout this reduced en-
ergy spectrum. This highlights the necessity of a suitable
orbital basis for the derivation of effective Hamiltonians
describing the spin physics. In the parity-optimized or-
bital basis, for the given example of CrBr3+6 , the terms
coupling to the charge degree of freedom of the electron
densities in the spin-like orbitals ϕq∈S are suppressed to
the extent that the simple effective Hamiltonian PHP
already becomes a good description of the spin excita-
tion spectrum. The subsequent Schrieffer-Wolff trans-
formation and utilization of the corresponding effective
Hamiltonian PH̃P yields insignificant improvements. In
constrast, we observe no such drastic suppression of the
undesirable coupling terms for the basis of the CASSCF
canonical molecular orbitals.
We have shown that our optimization procdure is able

to correctly identify the Nϕq
= 3 spin-like orbitals such

that a subset of the energy spectrum of CrBr3+6 can be
accurately reproduced by a system of three spin degrees
of freedom coupled to a fermionic environment. We fur-
ther observe that our Schrieffer-Wolff transformation ap-
proach yields a transformed Hamiltonian H̃ that, if pro-
jected to the Hilbert space representing three spins in a
fermionic environment, at least equals but typically bet-
ters the description given by the original Hamiltonian H
projected to the same subspace. We validate that the lo-
cal parity of the spin-like basis orbitals can be regarded as
a good indicator of the accuracy of the effective spin-bath
Hamiltonian description PH̃P derived with our method.

IV. CONCLUSION

Effective model Hamiltonians provide enormous value
for the investigation of individual aspects of complex
systems. Here, we have presented a procedure for the
automatic derivation of model Hamiltonians of coupled
spin degrees of freedom embedded in a fermionic environ-
ment. These Hamiltonians provide a means to enhance
the study of the dominant low temperature spin physics
of complex real materials. We have shown that to in-
vestigate the spin physics of such materials properly, one
first needs to operate within a suitable single particle or-
bital basis, where a subset of the basis orbitals become
realizations of spin degrees of freedom at low energies.
We have introduced the local parity as a sensible metric
for the spin-like behavior of electron densities in the basis
orbitals. We have proven that the natural orbital basis
does not generally correspond to the basis that features
the spin-like orbitals. We have provided an example toy
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model for which the natural orbital basis is significantly
worse than the initial basis for the study of spin physics.
We also studied a well-known singlet-diradical molecule,
namely closed configuration para-benzyne, and demon-
strated that the two well-known non-trivial spin-like or-
bitals are correctly determined by our local parity opti-
mization procedure. We find that the optimization of the
local parity yields an orbital basis that typically results
in a many particle basis of the Hilbert space with small
coupling and significant energy gap between the different
subspaces. Our extended Schrieffer-Wolff transformation
method allows to also transform generic Hamiltonians
with complicated interaction terms beyond the density-
density interactions of the toy models that the Schrieffer-
Wolff transformation has so far mostly been applied to.
There is also no need for the block-diagonal part H0 to
be easily diagonalizable, because no calculation of the
spectrum of H0 is required in Schrieffer-Wolff transfor-
mation our method. We have shown that our Schrieffer-
Wolff transformation method reproduces established re-
sults for the well-known single impurity Anderson model
and the disordered Fermi-Hubbard model Hamiltonians.
For these models we corroborate that the local parity of
the spin-like orbitals is a good predictor for the quality
of the effective spin-bath Hamiltonian as the description
of the low energy spin dynamics. Lastly, we have applied
the full spin-bath Hamiltonian derivation procedure to
molecular chromium bromide. Here, we have shown that
the derived effective spin-bath models are good descrip-
tions of the system’s low-energy spin excitations. Fu-
ture work will address more complex materials, where
the Schrieffer-Wolff transformation becomes essential to
obtain good effective Hamiltonian descriptions for the
low-energy spin dynamics of the material.
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Appendix A: Derivatives of the local parity

The analytic expression for the local parity ⟨Pq⟩ of the
orbital ϕq after rotation as a function of the rotation
angle θ and its derivatives are given by

⟨Pq⟩ =− 2

[∑
σ

cos2 θ ⟨c†iσciσ⟩+ sin2 θ ⟨c†jσcjσ⟩+ cos θ sin θ(⟨c†iσcjσ⟩+ ⟨c†jσciσ⟩)

]
+ 4

[
cos4 θ ⟨c†i↑c

†
i↓ci↓ci↑⟩+ sin4 θ ⟨c†j↑c

†
j↓cj↓cj↑⟩

+ cos3 θ sin θ
(
⟨c†i↑c

†
i↓ci↓cj↑⟩+ ⟨c†i↑c

†
i↓cj↓ci↑⟩+ ⟨c†i↑c

†
j↓ci↓ci↑⟩+ ⟨c†j↑c

†
i↓ci↓ci↑⟩

)
+ cos θ sin3 θ

(
⟨c†j↑c

†
j↓cj↓ci↑⟩+ ⟨c†j↑c

†
j↓ci↓cj↑⟩+ ⟨c†j↑c

†
i↓cj↓cj↑⟩+ ⟨c†i↑c

†
j↓cj↓cj↑⟩

)
+ cos2 θ sin2 θ

(
⟨c†i↑c

†
i↓cj↓cj↑⟩+ ⟨c†i↑c

†
j↓cj↓ci↑⟩+ ⟨c†j↑c

†
j↓ci↓ci↑⟩+ ⟨c†j↑c

†
i↓ci↓cj↑⟩

+⟨c†j↑c
†
i↓cj↓ci↑⟩+ ⟨c†i↑c

†
j↓ci↓cj↑⟩

)]
+ 1 , (A1)

d⟨Pq⟩
dθ

=4 sin θ cos θ

(∑
σ

⟨c†iσciσ⟩ − ⟨c†jσcjσ⟩

)
+ 2(sin2 θ − cos2 θ)

(∑
σ

⟨c†iσcjσ⟩+ ⟨c†jσciσ⟩

)
+ 4

[
(−4) sin θ cos3 θ ⟨c†i↑c

†
i↓ci↓ci↑⟩+ 4 sin3 θ cos θ ⟨c†j↑c

†
j↓cj↓cj↑⟩

+ 2
(
sin θ cos3 θ − sin3 θ cos θ

)
⟨A⟩

+
(
− sin4 θ + 3 sin2 θ cos2 θ

)
⟨B⟩

+
(
cos4 θ − 3 sin2 θ cos2 θ

)
⟨C⟩
]
, (A2)

d2⟨Pq⟩
dθ2

=

[∑
σ

4
(
cos2 θ − sin2 θ

) (
⟨c†iσciσ⟩ − ⟨c†jσcjσ⟩

)
+ 8 sin θ cos θ

(
⟨c†iσcjσ⟩+ ⟨c†jσciσ⟩

)]
+ 4

[(
−4 cos4 θ + 12 sin2 θ cos2 θ

)
⟨c†i↑c

†
i↓ci↓ci↑⟩

+
(
−4 sin4 θ + 12 sin2 θ cos2 θ

)
⟨c†j↑c

†
j↓cj↓cj↑⟩

+
(
2 sin4 θ + 2 cos4 θ − 12 sin2 θ cos2 θ

)
⟨A⟩

+
(
6 sin θ cos3 θ − 10 sin3 θ cos θ

)
⟨B⟩

+
(
−10 sin θ cos3 θ + 6 sin3 θ cos θ

)
⟨C⟩
]
, (A3)

where we have abbreviated
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⟨A⟩ =
(
⟨c†i↑c

†
i↓cj↓cj↑⟩+ ⟨c†i↑c

†
j↓cj↓ci↑⟩+ ⟨c†j↑c

†
j↓ci↓ci↑⟩

+⟨c†j↑c
†
i↓ci↓cj↑⟩+ ⟨c†j↑c

†
i↓cj↓ci↑⟩+ ⟨c†i↑c

†
j↓ci↓cj↑⟩

)
,

⟨B⟩ =
(
⟨c†j↑c

†
j↓cj↓ci↑⟩+ ⟨c†j↑c

†
j↓ci↓cj↑⟩+ ⟨c†j↑c

†
i↓cj↓cj↑⟩+ ⟨c†i↑c

†
j↓cj↓cj↑⟩

)
,

⟨C⟩ =
(
⟨c†i↑c

†
i↓ci↓cj↑⟩+ ⟨c†i↑c

†
i↓cj↓ci↑⟩+ ⟨c†i↑c

†
j↓ci↓ci↑⟩+ ⟨c†j↑c

†
i↓ci↓ci↑⟩

)
.

Appendix B: Symmetry-specification of fermionic
creation and annihilation operators

We demonstrate the concept of symmetry-specified
block-offdiagonal operators for the case of fermionic cre-
ation and annihilation operators. For a single orbital the
local Hilbert space is given by

Hlocal = {|0⟩, | ↑⟩, | ↓⟩, | ↑↓⟩} , (B1)

where we have fixed the order ↑, ↓ for the fermionic sign.
The fermionic annihilation operator c↓ : Hlocal → Hlocal

for fermions with spin sz = − 1
2 acts on the vectors in the

local Hilbert space and performs the linear map

c↓(a0|0⟩+ a↑| ↑⟩+ a↓| ↓⟩+ a↑↓| ↑↓⟩) (B2)

= a00H + a↑0H + a↓|0⟩+ (−a↑↓)| ↑⟩ ,

where 0H denotes the zero element of the Hilbert space.
We see that c↓ maps two of the states, namely |0⟩ and
| ↑⟩, map to the zero element. There are thus two non-
vanishing components of c↓ which map | ↓⟩ → |0⟩ and
| ↑↓⟩ → | ↑⟩. We can choose to distinguish the blocks
of the Hilbert space based on their total particle number
n =

∑
σ c

†
σcσ. We consequently identify the state | ↑↓⟩

as belonging to the block characterized by the eigenvalue
Λq = n = 2 and state | ↓⟩ to the block characterized by
the eigenvalue Λq = n = 1. Given the choice of n as the
operator distinguishing the blocks of the Hilbert space,
an intuitive choice for the operator A is the local number
of fermions with opposite spin sz = 1

2 , i.e. the operator

n↑ = c†↑c↑. It is easily seen that the choice A = n↑
satisfies

[n, n↑] = 0 , (B3)

[c↓, n↑] = 0 , (B4)

where eq. (B3) highlights that n↑ commutes with all op-
erators that are block-diagonal in our choice of blocks
distinguish by n. The operator n↑ has eigenvalues λq ∈
{0, 1}. Using equations (22) and (24) we can express the
operator c↓ as sum of unique components

c↓ = α0 (n↑ − 1) c↓ + α1 (n↑ − 0) c↓

= −(n↑ − 1)c↓ + (n↑ − 0)c↓

= (1− n↑)c↓ + n↑c↓

= cλq=0,↓ + cλq=1,↓ . (B5)

The separation of c↓ into its unique components can also
be achieved by multiplying it with the identity 1 = (1−
n↑) + n↑. We expand the Hermitian conjugate operator

c†↓ in the same way as

c†↓ = c†λq=0,↓ + c†λq=1,↓ = (1− n↑) c
†
↓ + n↑c

†
↓ , (B6)

and find

[
cλq=0,↓, c

†
λq=0,↓

]
= (1− n↑) (1− n↑)

[
c↓, c

†
↓

]
= (1− n↑)

(
1− 2c†↓c↓

)
[
cλq=0,↓, c

†
λq=1,↓

]
= (1− n↑)n↑

[
c↓, c

†
↓

]
= 0[

cλq=1,↓, c
†
λq=0,↓

]
= n↑ (1− n↑)

[
c↓, c

†
↓

]
= 0[

cλq=1,↓, c
†
λq=1,↓

]
= n↑ n↑

[
c↓, c

†
↓

]
= n↑

(
1− 2c†↓c↓

)
.

(B7)
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