Anwendung von Quantensimulationen in der Wasserstoffforschung

Eine Softwareplattform zur Quantensimulation

Ziel

Das Projekt AQUAS verfolgt das Ziel, die Wasserstoffforschung und -herstellung durch Quantensimulation von Elektrolysematerialien auf eine neue Ebene zu heben und somit eine erforderliche Effizienzsteigerung zu erreichen. Dies soll durch die Validierung und Implementierung innovativer Softwaretools, die hybride und in naher Zukunft einsatzbereite Algorithmen verwenden, erreicht werden. Der Fokus liegt dabei auf Algorithmen, die auf bereits existierender fehlerbehafteter Hardware einsatzbereit sind.

Motivation

Der Energiewandel fordert eine Effizienzsteigerung im Bereich von Brennstoffzellen und Elektrolyseuren. Die quanten-chemische numerische Berechnung von Atom- und Molekülbindungen ermöglicht eine genauere Betrachtung bestimmter Prozesse und Materialien, was wiederum das gesamte Forschungsfeld signifikant voranbringt. Der derzeitige Forschungsstand und die vorhandene Hardware begrenzen jedoch Vorhersagekraft der Berechnungen. Die Verwendung hybrider Algorithmen verspricht jedoch eine präzisere Berechnung. Hybrid bedeutet hier, dass klassische Computer und Quantencomputer eng miteinander verzahnt werden.

Vorgehen

Die quantenmechanische Simulation basierend auf einer Kombination klassischer Computer und Quantencomputer verspricht eine genauere Betrachtung von relevanten Materialien zur Wasserstoffherstellung und Katalysatoren. Dies soll durch die Implementierung verschiedener Verfahren ermöglicht werden. Einerseits werden variationelle Quantenalgorithmen eingesetzt. Insbesondere jedoch wird ein Verfahren entwickelt, das eine sogenannte Einbettung durchführen und das Materialproblem in Unterprobleme aufteilen soll, von denen ein Teil auf dem Quantencomputer gelöst werden muss. Quantum Machine Learning (QML) Methoden werden das Verfahren ergänzen.

Key Facts

Projektkoordination

HQS Quantum Simulation GmbH

Förderung

Bundesministerium für Wirtschaft und Klimaschutz
weiterführende Informationen
Fördernummer: 01MQ22003A

Laufzeit

January 2022 - December 2024

Budget

Gesamtvolumen: 3,5 Mio. €
Fördermittel: 2,7 Mio. €

Konsortium

Deutsches Zentrum für Luft- und Raumfahrt e.V.
Institut für Technische Thermodynamik, Stuttgart

Deutsches Zentrum für Luft- und Raumfahrt e.V.
Institut für Softwaretechnologie, Köln

Fraunhofer
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

HQS Quantum Simulations GmbH
(Konsortialführer)

Universität Ulm
Institut für Theoretische Chemie

Papers

  • Variational algorithms such as the Quantum Approximate Optimization Algorithm have attracted attention due to their potential for solving problems using near-term quantum computers. The ZZ interaction typically generates the primitive two-qubit gate in such algorithms applied for a time, typically a variational parameter, γ. Different compilation techniques exist with respect to the implementation of two-qubit gates. Due to the importance of the ZZ-gate, we present an error analysis comparing the continuous-angle controlled phase gate (CP) against the fixed angle controlled Z-gate (CZ). We analyze both techniques under the influence of coherent over-rotation and depolarizing noise. We show that CP and CZ compilation techniques achieve comparable ZZ-gate fidelities if the incoherent error is below 0.03% and the coherent error is below 0.8%. Thus, we argue that for small coherent and incoherent error a non-parameterized two-qubit gate such as CZ in combination with virtual Z decomposition for single-qubit gates could lead to a significant reduction in the calibration required and, therefore, a less error-prone quantum device. We show that above a coherent error of 0.04π (2%), the CZ gate fidelity depends significantly on γ.

  • In this work, we propose a multi-scale protocol for routine theoretical studies of chemical reaction mechanisms. The initial reaction paths of our investigated systems are sampled using the Nudged-Elastic Band (NEB) method driven by a cheap electronic structure method. Forces recalculated at the more accurate electronic structure theory for a set of points on the path are fitted with a machine-learning technique (in our case symmetric gradient domain machine learning or sGDML) to produce a semi-local reactive Potential Energy Surface (PES), embracing reactants, products and transition state (TS) regions. This approach has been successfully applied to a unimolecular (Bergman cyclization of enediyne) and a bimolecular (SN2 substitution) reaction. In particular, we demonstrate that with only 50 to 150 energy-force evaluations with the accurate reference methods (here CASSCF and CCSD) it is possible to construct a semi-local PES giving qualitative agreement for stationary-point geometries, intrinsic reaction-coordinates and barriers. Furthermore, we find a qualitative agreement in vibrational frequencies and reaction rate coefficients. The key aspect of the method's performance is its multi-scale nature, which not only saves computational effort but also allows extracting meaningful information along the reaction path, characterized by zero gradients in all but one direction. Agnostic to the nature of the TS and computationally economic, the protocol can be readily automated and routinely used for mechanistic reaction studies.

  • We introduce analysis of orbital parities as a concept and a tool for understanding radicals. Based on fundamental reduced one- and two-electron density matrices, our approach allows us to evaluate a total measure of radical character and provides spin-like orbitals to visualize real excess spin or odd electron distribution of singlet polyradicals. Finding spin-like orbitals aumotically results in their localization in the case of disjoint (zwitterionic) radicals and so enables radical classification based on spin-site separability. We demonstrate capabilities of the parity analysis by applying it to a number of polyradicals and to prototypical covalent bond breaking.

  • We apply the analytically solvable model of two electrons in two orbitals to diradical molecules, characterized by two unpaired electrons. The effect of the doubly occupied and empty orbitals is taken into account by means of random phase approximation (RPA). We show that in the static limit the direct RPA leads to the renormalization of the parameters of the two-orbital model. We test our model by comparing its predictions for the singlet-triplet splitting with the results from multi-reference CASSCF and NEVPT2 simulations for a set of ten molecules. We find that, for the whole set, the average relative difference between the singlet-triplet gaps predicted by the RPA-corrected two-orbital model and by NEVPT2 is about 40%. For the five molecules with the smallest singlet-triplet splitting the accuracy is better than 20%.

  • Since the entry of kernel theory in the field of quantum machine learning, quantum kernel methods (QKMs) have gained increasing attention with regard to both probing promising applications and delivering intriguing research insights. Two common approaches for computing the underlying Gram matrix have emerged: fidelity quantum kernels (FQKs) and projected quantum kernels (PQKs). Benchmarking these methods is crucial to gain robust insights and to understand their practical utility. In this work, we present a comprehensive large-scale study examining QKMs based on FQKs and PQKs across a manifold of design choices. Our investigation encompasses both classification and regression tasks for five dataset families and 64 datasets, systematically comparing the use of FQKs and PQKs quantum support vector machines and kernel ridge regression. This resulted in over 20,000 models that were trained and optimized using a state-of-the-art hyperparameter search to ensure robust and comprehensive insights. We delve into the importance of hyperparameters on model performance scores and support our findings through rigorous correlation analyses. In this, we also closely inspect two data encoding strategies. Moreover, we provide an in-depth analysis addressing the design freedom of PQKs and explore the underlying principles responsible for learning. Our goal is not to identify the best-performing model for a specific task but to uncover the mechanisms that lead to effective QKMs and reveal universal patterns.

Kontakt

Dr. Vladimir Rybkin

AQUAS Grant Manager

HQS Quantum Simulations GmbH
Rintheimer Straße 23
D-76131 Karlsruhe

E-Mail: vladimir.rybkin@quantumsimulations.de

Dr. Michael Marthaler

CEO und Mitbegründer
HQS Quantum Simulations GmbH

HQS Quantum Simulations GmbH
Rintheimer Straße 23
D-76131 Karlsruhe

E-Mail: michael.marthaler@quantumsimulations.de