Probing the Tavis-Cummings level splitting with intermediate-scale superconducting circuits

Authors: Ping Yang, Jan David Brehm, Juha Leppäkangas, Lingzhen Guo, Michael Marthaler, Isabella Boventer, Alexander Stehli, Tim Wolz, Alexey V. Ustinov, Martin Weides
Journal reference: Phys. Rev. Applied 14, 024025 (2020)

We demonstrate the local control of up to eight two-level systems interacting strongly with a microwave cavity. Following calibration, the frequency of each individual two-level system (qubit) is tunable without influencing the others. Bringing the qubits one by one on resonance with the cavity, we observe the collective coupling strength of the qubit ensemble. The splitting scales up with the square root of the number of the qubits, which is the hallmark of the Tavis-Cummings model. The local control circuitry causes a bypass shunting the resonator, and a Fano interference in the microwave readout, whose contribution can be calibrated away to recover the pure cavity spectrum. The simulator's attainable size of dressed states with up to five qubits is limited by reduced signal visibility, and -- if uncalibrated -- by off-resonance shifts of sub-components. Our work demonstrates control and readout of quantum coherent mesoscopic multi-qubit system of intermediate scale under conditions of noise.

https://arxiv.org/abs/1810.00652

Previous
Previous

Finding the ground state of the Hubbard model by variational methods on a quantum computer with gate errors

Next
Next

Resonance inversion in a superconducting cavity coupled to artificial atoms and a microwave background